Course.mlsafety.org is a subdomain of Mlsafety.org, which was created on 2021-07-19,making it 3 years ago.
Description:An advanced course covering empirical directions to reduce...
Discover course.mlsafety.org website stats, rating, details and status online.Use our online tools to find owner and admin contact info. Find out where is server located.Read and write reviews or vote to improve it ranking. Check alliedvsaxis duplicates with related css, domain relations, most used words, social networks references. Go to regular site
HomePage size: 34.718 KB |
Page Load Time: 0.551798 Seconds |
Website IP Address: 185.199.109.153 |
Intro OTG Global intro.otg.global |
Buddy4Study Exam - Admit Card, Cut Off, Eligibility and Syllabus exam.buddy4study.com |
CBSE Sample Papers, Syllabus, Online Tests & NCERT Solutions helpline.icbse.com |
Miller Intro to Judaism Program | American Jewish University intro.aju.edu |
Conquer Sierra Leone's Business Landscape: An Intro to the Environment - Sensi Tech Hub business.sensi-sl.org |
AglaSem Career - Recruitment Exams Question Papers, Cut Offs, Syllabus, Study Material career.aglasem.com |
Intro to Estimote APIs - Estimote Developer developer.estimote.com |
Intro to Dyeing with Fiber Reactive Dyes | Candied Fabrics Dyeing 100 dyeing100.candiedfabrics.com |
Video Intro Maker Online | IntroChamp templates.introchamp.com |
Geoff Ralston's Intro - Startup Investor School Day 1 - YouTube investor.startupschool.org |
Weddings - Video Intro | Zach & Jody Gray | Nashville Wedding Photographers weddings.zachandjody.com |
GATE 2024 Exam Date, Syllabus, Coaching, Study materials, Question Papers, GATE 2024 Prep gate.examsavvy.com |
Faculty Syllabus - Lone Star College System kingwood.lonestar.edu |
Syllabus | Intro to ML Safety https://course.mlsafety.org/ |
About | Intro to ML Safety https://course.mlsafety.org/about |
Readings | Intro to ML Safety https://course.mlsafety.org/readings/ |
Connection: keep-alive |
Content-Length: 18885 |
Server: GitHub.com |
Content-Type: text/html; charset=utf-8 |
Last-Modified: Mon, 29 Apr 2024 18:52:33 GMT |
Access-Control-Allow-Origin: * |
ETag: "662fec71-49c5" |
expires: Thu, 16 May 2024 18:48:12 GMT |
Cache-Control: max-age=600 |
x-proxy-cache: MISS |
X-GitHub-Request-Id: ED28:E748E:3E0785A:3FD430C:66465292 |
Accept-Ranges: bytes |
Age: 0 |
Date: Thu, 16 May 2024 18:38:12 GMT |
Via: 1.1 varnish |
X-Served-By: cache-bur-kbur8200085-BUR |
X-Cache: MISS |
X-Cache-Hits: 0 |
X-Timer: S1715884692.255810,VS0,VE94 |
Vary: Accept-Encoding |
X-Fastly-Request-ID: |
charset="utf-8"/ |
content="IE=Edge" http-equiv="X-UA-Compatible"/ |
content="width=device-width, initial-scale=1" name="viewport"/ |
content="Jekyll v3.9.5" name="generator" |
content="Syllabus" property="og:title" |
content="Dan Hendrycks" name="author" |
content="en_US" property="og:locale"/ |
content="An advanced course covering empirical directions to reduce AI x-risk" name="description"/ |
content="An advanced course covering empirical directions to reduce AI x-risk" property="og:description"/ |
content="https://course.mlsafety.org/" property="og:url"/ |
content="Intro to ML Safety" property="og:site_name"/ |
content="https://course.mlsafety.org/assets/images/meta_card_mlsafety.jpg" property="og:image"/ |
content="website" property="og:type"/ |
content="summary_large_image" name="twitter:card"/ |
content="https://course.mlsafety.org/assets/images/meta_card_mlsafety.jpg" property="twitter:image"/ |
content="Syllabus" |
Ip Country: United States |
City Name: San Francisco |
Latitude: 37.7642 |
Longitude: -122.3993 |
Safety Link Search Menu Expand Document Intro to ML Safety About Readings Syllabus This site uses Just the Docs , a documentation theme for Jekyll. ML Safety Community Express interest in the next semester of Intro to ML Safety . Syllabus Legend: ? lecture recording, ?️ slides, ? notes, ? written questions, ⌨️ coding assignment. Background 1 Introduction ? , ?️️ 2 Optional Deep Learning Review ? , ?️ , ? , ? , ⌨️ building blocks, optimizers, losses, datasets Safety Engineering 3 Risk Decomposition ? , ?️️ risk analysis definitions, disaster risk equation, decomposition of safety areas, ability to cope and existential risk 4 Accident Models ? , ?️ FMEA, Bow Tie model, Swiss Cheese model, defense in depth, preventative and protective measures, complex systems, nonlinear causality, emergence, STAMP 5 Black Swans ? , ?️ unknown unknowns, long tailed distributions, multiplicative processes, extremistan ► Review questions ? Robustness 6 Adversarial Robustness ? , ?️ , ? , ⌨️ optimization pressure, PGD, untargeted vs targeted attacks, adversarial evaluation, white box vs black box, transferability, unforeseen attacks, text attacks, robustness certificates 7 Black Swan Robustness ? , ?️️ , ? stress tests, train-test mismatch, adversarial distribution shifts, simulated scenarios for robustness 8 Review questions ? Monitoring 8 Anomaly Detection ? , ?️️ , ? , ⌨️ AUROC/AUPR/FPR95, likelihoods and detection, MSP baseline, OE, ViM, anomaly datasets, one-class learning, detecting adversaries, error detection 9 Interpretable Uncertainty ? , ?️ , ? calibration vs sharpness, proper scoring rules, Brier score, RMS calibration error, reliability diagrams, confidence intervals, quantile prediction 10 Transparency ? , ?️ saliency maps, token heatmaps, feature visualizations, ProtoPNet 11 Trojans ? , ?️ , ? , ⌨️ hidden functionality from poisoning, treacherous turns 12 Detecting Emergent Behavior ? , ?️ , ? emergent capabilities, instrumental convergence, Goodhart’s law, proxy gaming 13 Review questions ? Control 13 Honest Models ? , ?️ truthful vs. honest, inverse scaling, instances of model dishonesty 14 Power Aversion ?️ measuring power; the power-seeeking argument; power penalties 15 Machine Ethics ? , ?️ , ⌨️ normative ethics background, human values, value learning with comparisons, translating moral knowledge into action, moral parliament, value clarification Systemic Safety 16 ML for Improved Decision-Making ? , ?️ , ? forecasting, brainstorming 17 ML for Cyberdefense ? , ?️ intrusion detection, detecting malicious programs, automated patching, fuzzing 18 Cooperative AI ? , ?️ , ? nash equilibria, dominant strategies, stag hunt, Pareto improvements, cooperation mechanisms, morality as cooperation, cooperative dispositions, collusion externalities Additional Existential Risk Discussion 19 X-Risk Overview ? , ?️ arguments for x-risk 20 Possible Existential Hazards ? , ?️ weaponization, proxy gaming, treacherous turn, deceptive alignment, value lock-in, persuasive AI 21 Safety-Capabilities Balance ? , ?️ theories of impact, differential technological progress, capabilities externalities 22 Natural Selection Favors AIs over Humans ? , ?️ Lewontin’s conditions, multiple AI agents, generalized Darwinism, mechanisms for cooperation 23 Review and Conclusion ? , ?️ , ? pillars of ML safety research, task-train-deploy pipeline Copyright © 2023. Created by Dan Hendrycks at the Center for...
Domain Name: mlsafety.org Registry Domain ID: 978b8786b88944d1bfcde9c06ca86a48-LROR Registrar WHOIS Server: whois.squarespace.domains Registrar URL: https://domains.squarespace.com Updated Date: 2023-09-02T16:10:10Z Creation Date: 2021-07-19T16:09:39Z Registry Expiry Date: 2024-07-19T16:09:39Z Registrar: Squarespace Domains II LLC Registrar IANA ID: 895 Registrar Abuse Contact Email: abuse-complaints@squarespace.com Registrar Abuse Contact Phone: +1.6466935324 Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibited Registrant Organization: Contact Privacy Inc. Customer 7151571251 Registrant State/Province: ON Registrant Country: CA Name Server: ns-cloud-e1.googledomains.com Name Server: ns-cloud-e3.googledomains.com Name Server: ns-cloud-e2.googledomains.com Name Server: ns-cloud-e4.googledomains.com DNSSEC: signedDelegation >>> Last update of WHOIS database: 2024-05-18T07:56:19Z <<<